the globus alliance

www.globus.org

Improved Selective
Acknowledgment Scheme for TCP

Raj Kettimuthu & Bill Allcock

Globus Alliance / Argonne National Laboratory

the globus alliance

www.globus.org

Introduction

e Improved Selective Acknowledgment (ISACK)
Scheme addresses limitations of TCP selective
acknowledgment (SACK) mechanism

¢ SACK can convey information about only 4
noncontiguous blocks of data received

¢+ Sender might have to unnecessarily retransmit
some packets

e ASACK uses both SACK and ISACK to give
optimal performance

06/22/2004 IC 2004

the globus alliance

www.globus.ore

Background

e TCP provides connection-oriented, reliable byte

stream service.

+ Provides reliability by assigning a sequence number
to each octet transmitted and by requiring a positive

ACK
+ The acknowledgment mechanism is cumulative

e TCP provides flow control
+ Return a “window” with every ACK indicating a range
of acceptable sequence numbers

06/22/2004 IC 2004

the globus alliance

www.globus.or

Background

e Routers and slower links between sender
and receiver may cause congestion

e Slow start, congestion avoidance, fast
retransmit and fast recovery to deal with
congestion

+ Congestion window (cwnd) and slow start
threshold size (ssthresh) for each
connection

¢ Sender transmits up to min(congestion
window, advertised window)

06/22/2004 IC 2004

the globus alliance

www.globus.org

Congestion control algorithm

e Cwnd initialized to one segment and
ssthresh to a large value

e If (cwnd <= ssthresh), TCP performs slow
start; else it performs congestion
avoidance
+ Slow start - cwnd begins at one segment

and incremented by one segment for every
ACK

+ Congestion avoidance - increase in cwnd is
at most one segment per RTT

06/22/2004 IC 2004

the globus alliance

www.globus.org

Congestion control algorithm

e Congestion indicated by timeout or
reception of 3 consecutive duplicate ACKs

e When a timeout occurs, set ssthresh to
max(window/2, 2) and cwnd to one
segment

+ Note: window = min(cwnd, advertised
window)

e On receiving 3 consecutive dupacks, fast
retransmit and fast recovery are performed

06/22/2004 IC 2004

the globus alliance

www.globus.or

Congestion control algorithm

e Fast retransmit — retransmits apparently
missing segment, set ssthresh =
max(window/2, 2), cwnd = ssthresh + 3
and enter fast recovery

+ Inflates cwnd by the number of segments
that have left the network and that the

other end has cached

+ Receipt of dupacks tells TCP more than just
a packet has been lost — data is still flowing
between the two ends

06/22/2004 IC 2004

the globus alliance

www.globus.org

Congestion control algorithm

e Fast recovery - increments cwnd by
segment size each time a dupack arrives

and transmits a packet (if allowed)

e When next ACK arrives that acknowledges

the retransmitted data, set cwnd =
ssthresh and enter congestion avoidance

e TCP Reno includes this congestion control
algorithm

06/22/2004 IC 2004

the globus alliance

Enter Fast Retransmit/Recovery
[4] 61 7[8[9]10]
A TR

Exit Fast Retransmit/Recovery
10[11] 1

WAW.([0

ybus.org

T

O 00—l

4
10
11

dupack 4
dupack 4
dupack 4
dupack 4
dupack 4

ack 10

Figure 1. Behavior of TCP Reno in the presence
of a single dropped segment in a window of data

06/22/2004

Eater Fast Retransmit/Recovery

EEEREER

Exit Fast Retransmit/Recovery
(89110

Not enough dupacks to enter
Fast Retransmit/Recovery

Behavior of TCP Reno

D00~ O e

dupack 4

—
=
==

dupack 4
dupack 4
ack 8

dupack 8

Figure 2. Behavior of TCP Reno in the pres-
ence of multiple dropped segments in a window

of data

IC 2004

the globus alliance

www.globus.org

TCP New-Reno

e When a partial ACK is received, it retransmits
the first unacknowledged segment in the
window and remains in fast recovery

e Remains in fast recovery until all of the data

outstanding when fast recovery was initiated
has been acknowledged

e When multiple segments are lost from a
single window, it recovers without a timeout,
retransmitting one lost segment per RTT

06/22/2004 IC 2004 10

the globus alliance

www.globus.org

e Retransmitting one lost segment per RTT is

still slow

e SACK helps recover faster by providing
additional information about the state of

congestion

SACK

e Uses two new TCP options

06/22/2004

Kind =4 |Length=2
Figure 3. SACK-permitted option

IC 2004

11

the globus alliance

www.globus.org

SACK

Kind=5| Length

Left Edge of 1* Block

Right Edge of 1¥ Block

Left Edge of n™ Block

Right Edge of n™ Block

06/22/2004

Figure 4. SACK option

IC 2004

12

the globus alliance

www.globus.org

Limitations of SACK

e SACK option that specifies "n”
noncontiguous blocks will have a length of
"8*n+2" bytes

e TCP options space - 40 bytes

e SACK can specify a maximum of 4 blocks

e SACK is often used with timestamp option,
reducing the number of blocks to 3

e Introduction of new options may reduce it
further

06/22/2004 IC 2004

13

the globus alliance

www.globus.org

Limitations of SACK

[€— Sender would retransmit

segment 4000

Triggering 1* Block 2™ Blogk 3" Block
Seginenf ACK Left | Right | Left | Right | Left | Right
' Edge | Edge | Edge | Edge | Edge | Edge
3500 4000
4000 (lost)
4500 4000 4500 | 5000
3000 4000 4500 | 5300
3500 4000 4500 | 6000
6000 4000 (lost) | 43500 | 6500
6500 (lost)
7000 4000 (lost) | 7000 | 7500 | 4500 | 6500
7300 (lost)
8000 4000 (lost) [8000 [8300 | 7000 [7500 |4500 | 6500
8300 (lost)
9000 4000 9000 | 9500 | 8000 |&3500 | 7000 | 7500

[€— Sender would retransmit

06/22/2004

Figure 5. Limitation with TCP SACK

IC 2004

segment 6000 (unnecessary)

14

the globus alliance

www.globus.org

ISACK

e For each noncontiguous block, ISACK
sends the offset of the left edge from the
32-bit “(cumulative) Acknowledgment
Number” field

e Uses 2 new TCP options

Kind =27 | Length=2
Figure 6. ISACK-permitted option

e Enabling option sent in SYN segment

06/22/2004 IC 2004 15

06/22/2004

the globus alliance

www.globus.org

ISACK option

Kind =29 | Length | Offset Size

Offset for Left Edge of 1% Block

Size of 1¥ Block

Offset for Left Edge of n™ Block

Size of ™ Block

Figure 7. ISACK option

IC 2004 16

the globus alliance

www.globus.or

ISACK option

e "'Offset” field specifies the number of bits
used to represent the offsets of each left
edge
+ Value is given by ceil(log,(maxoffset));

maxoffset is the largest among the offsets

e 'Size” field specifies the number of bits
used to represent the size of each block

+ Value is given by ceil(log,(maxsize));
maxsize is the size of the largest block

06/22/2004 IC 2004 17

the globus alliance

www.globus.org

Table 1. Behavior of SACK
Tri B 1" Block 22% Block 3™ Block 4™ Block
Tiggering ACK Left | Right | Left | Right | Left | Right | Left | Right
Segment 5 34 = =
= Edge Edge | Edge | Edge | Edge | Edge | Edge | Edge
5000 5500
5500 (lost)
6000 5500 6000 6500
6500 (lost)
7000 5500 7000 7500 6000 | 6500
7500 (lost)
8000 5500 8000 8500 7000 7500 G000 | 6500
8500 (lost)
9000 5500 9000 0500 8000 | 8500 7000 7500 6000 | 6500
9500 (lost)
10000 5500 10000 | 10500 | 9000 | 9500 8000 | 8500 7000 | 7500
Table 2. Behavior of ISACK
Triggering ACK 1¥ Block 2%¢ Block 3™ Block 4™ Block 5™ Block
Segment ' Offset | Size | Offset | Size | Offset | Size | Offset | Size | Offset | Size
5000 5500
5500 (lost)
6000 5500 500 500
6500 (lost)
7000 5500 1500 | 500 500 500
7500 (lost)
8000 5500 | 2500 | 500 1500 | 500 500 500
8500 (lost)
9000 5500 3500 500 2500 500 1500 500 500 500
9500 (lost)
10000 5500 4500 500 3500 500 2500 500 1500 500 500 500
IC 2004

06/22/2004

18

the globus alliance

www.globus.org

Behavior of ISACK

e Maxoffset = 4500

e Number of bits used to represent each offset
= ceil(log,(4500)) = 13

e Maxsize = 500

e Number of bits used to represent the size of
each block = ceil(log,(500)) =9

e Total number of bits required by ISACK option
to specify the 5 noncontiguous blocks =
8(Kind) + 8(Length) + 8(Offset) + 8(Size) +
5*13(offsets) + 5*9(sizes) = 142 bits(18
bytes)

06/22/2004 IC 2004 19

the globus alliance

www.globus.org

ASACK

e ISACK imposes a little more processing
overhead than does SACK

e Use ISACK only when SACK can not convey
the information

e ASACK dynamically switches between
SACK and ISACK to give optimal
performance

Kind =28 | Length =2
Figure 8. ASACK-permitted option

06/22/2004 IC 2004

20

